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novelty in this application is in using these methods as 
an aid to recognizing structures; normally they are 
used to represent structures once they have been 
determined. However we feel that our application is 
not a trivial one since the examination of masses of 
E-map output had become a major stumbling block in 
the structure - solving process - especially for non- 
centrosymmetric structures. Now, on average, 30 
minutes of perusal of the graphical displays together 
with the numerical supplementary information re- 
lating to bond lengths and angles is sufficient to find the 
structure. We have now reached the stage of develop- 
ment where for the vast majority of moderately com- 
plex structures no human judgement is required be- 
tween setting a crystal on an automatic diffractometer 
to the point of examining the graphical output. 

Since they became available some two years ago 
about 300 structures have been solved by the LSA M 
and MULTAN programme packages. The availability 
of the graphical search routines should make these 
programmes even more attractive to those who wish 
to solve moderately complex crystal structures with- 
out being too intimately concerned with the method of 
solution so that it becomes just one more technique for 

examining materials albeit a little more complicated 
than ESR or NMR. 

The development of this technique was carried out 
in the Centre de Calcul, Universit6 de Louvain, and 
we are grateful for the generous provision of these 
facilities. We are also grateful to O. Dideberg, L. 
Dupont, M. Koch, J. P. Putzeys, C. de Rango and G. 
Tsoucaris for making data available to develop the 
procedure. 

The close liaison between the laboratories at York 
and Louvain has been made possible by a grant from 
the North Atlantic Treaty Organisation and other 
generous support of our activity has been given by the 
Science Research Council. 
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A method is described for the derivation of binary closest-packed layers of a given composition with 
the condition that the atoms of the minor component should be crystallographically equivalent. The 
method is based on the theory of derivatives of space groups developed by Buerger, which is here 
applied to those multiple cells that may be regarded as tessellations drawn over a basic triangular net. 
"Ihe results are presented for a set of compositions, in order to illustrate the method of derivation. 

Introduction 

In preceeding work concerning the systematic deriva- 
tion of close-packed structure types (Lima-de-Faria 
& Figueiredo, 1969), a method was developed in which 
the rules for derivation followed directly from the con- 
ditions for structural stability already discussed (Lima- 
de-Faria, 1965). Appropriate layers were so deduced 
for the generation of ordered binary close-packed 
structures, under the previous statement of crystallo- 
graphic equivalency for the atoms of the minor com- 
ponent. 

The fact that this method applied to the majority 
of known structures in the area investigated proved 
its efficacy in deriving the most probable patterns. 
However, it was not established that all the appropri- 
ate layers had been derived. On the other hand, a small 
proportion were found to have no corresponding ap- 
propriate layer; if proved, and not merely a conse- 
quence of the simplifications involved in that derivation 
technique, this circumstance has interesting structural 
implications. The aim of the present work is to verify 
these results by applying an exhaustive method to the 
derivation of these binary close-packed layers. 
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Statement of the problem 

The essential problem is to find all the two-dimensional 
patterns built up with symmetrically equivalent points 
as a result of partially filling the nodes of a triangular 
net. 

The two designations, triangular net and hexagonal 
lattice, will be used below to refer to the regular tessel- 
lation we are dealing with, whose Schl/~fli symbol is 
{3,6}; the geometrical aspect is implied with the first 
designation while the second applies to the crystallo- 
graphic point of view. 

The proportion of the triangular net filled will be 
given by the ratio of the number of occupied nodes in 
a multiple cell considered over the fundamental net to 
the total number of nodes covered by this cell. The 
occupied nodes must be symmetrically equivalent, as 
stated above, and thus they will belong to a single set 
of equivalent positions, either general or special, of the 
plane symmetry group or groups, compatible with the 
two-dimensional cell used. The groups analysed are re- 
stricted to those involving symmetry elements consis- 
tent with those already found in the original lattice, 
and consequently the groups containing fourfold rota- 
tion points are excluded. Also, when considering the 
distribution of one sole component, as is the case here, 
the general position in p l  corresponds to a mono- 
clinic primitive lattice (Burzlaff, Fischer & Hellner, 
1968). Therefore, only 13 of the 17 two-dimensional 
space groups have to be taken into account. 

The proposed question appears then to be split into 
two distinct problems : (a) to find the subarrays or 
multiple ceils that are compatible with the triangular 
net; (b) to search for the distinct configurations built 
up with equivalent points that those cells could origi- 
nate. 

Tessellations and the subdivision of the triangular net 

The particular case of subdividing the nodes of a 
triangular net into hexagonal subarrays has already 
been treated in the literature in relation to other topics 
(Iida; 1957; Morris & Loeb, 1960; Loeb, 1962, 1964, 
1968). In every instance, the hexagonal subarray corre- 
sponds to a compound tessellation with general sym- 
bol {3,6} [n{3,6}] (Takeda & Donnay, 1965), where n 
is the multiplicity of the larger cell, that is, the total 
number of nodes contained in it. However, this particu- 
lar case is here included under the general treatment of 
subdivision into subarrays of all possible symmetries. 

As a consequence of the symmetry of the hexagonal 
lattice itself, oblique, rectangular and hexagonal mul- 
tiple cells are possible, while square cells are not. Such 
cells define subarrays that may be regarded as tessella- 
tions (Coxeter, 1961, p. 52), whose faces are parallelo- 
grams, rectangles and rhombs respectively. For any 
tessellation, provided a sufficiently large circle is con- 
sidered, the number of lattice points equals the number 
of faces (Coxeter, 1961, p. 53). Crystallographically 

speaking, this means that the multiplicity of a general 
cell is given by the area ratio A/a, where A is the area 
of the multiple cell and ~ is the area of the rhomb con- 
stituting the elementary cell of the hexagonal lattice. 

In the same kind of treatment, given by Loeb (1964) 
to subdivision into hexagonal subarrays, vector algebra 
was used to express A in terms of ~ for any kind of 
regular subdivision of the triangular net. Starting from 
a node taken as origin, let at and a2 be the elementary 
vectors characterizing the elementary cell of the hex- 
agonal lattice, whose area is ~ (Fig. 1). At and A2 are 
the vectors defining the multiple cell of area A; ex- 
panding them in terms of at and a2 we have 

At = kat + laz 
A2 = uax + va2 

where k, l, u and v are integers. 
For all the cases to be considered, it is sufficient to 

keep fl, the angle between At and A2, between 60 and 90 °. 
Therefore, the parameters defining these vectors must 
be positive integers, and to avoid duplication arising 
from different orientations of the same cell, it is postu- 
lated that only u may assume the value zero. So, the 
conditions are 

60°_<fl_<90 ° 

k, / ,v>0 ,  u > 0 .  

The vector and scalar products of vectors A~ and 
A2 provide the main equations relating the area ratio 
A/o~ and the angle/3 with the free parameters k , / ,  u, v: 

A/o~= k v -  lu (1) 

v (2 l -  k) + u(2k - l) (2) 
cot fl= l / 3 (kv -  lu) 

For hexagonal cells expression (1) assumes a simple 
form (Loeb, 1964) because fl= 60 ° and the defining vec- 
tors At and A2 have the same magnitude 

A/o:= k 2 -  kl  + l 2 . (3) 

/ 

1 

Fig. 1. General cell and defining vectors and parameters. 
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For rectangular cells, as cot/~= 0, a simplified form 
can also be obtained, but for the case of oblique cells 
there is no substantial simplification to be made. 

Therefore, by giving values to k, l, u and t' in equa- 
tions (1) and (2), the solution of the first question is 
obtained, that is these equations allow for the search 
of the multiple cells with a given multiplicity that are 
compatible with the triangular net. 

Plane symmetry groups and the derivation of 
homogeneous configurations 

According to the intrinsic symmetry of the hexagonal 
lattice, the two-dimensional symmetry group ascribed 
to the elementary cell of area ~ is p 6m; to any multiple 
cell of area A a derivative (Buerger, 1947, 1967) of p 6m 
will be the highest permissible symmetry group. 

The derivatives of a given space group consist of 
all its subgroups in the widest sense, and these will 
belong to different categories, depending on whether 
their translation groups are different or the same as 
that of the space group concerned (Buerger, 1967). As 
we are dealing with multiple cells, the subgroups in- 
volved here have different translation groups; this 
relates only to the cell dimensions when considering 
hexagonal cells, but concerns also the lattice type for 
rectangular and oblique cells. 

The space groups dealt with here are two-dimen- 
sional, and so the nomenclature is that of htternational 
Tables for X-ray Crystallography (1952). A slight 
change is introduced because the word 'point '  when re- 
ferred to a rotation centre (n-fold point) could cause 
confusion, since the nodes of the triangular net are 
often referred to as points (lattice points); therefore 
preference is given to the designation 'rotocentre' (Le 
Corbeiller & Loeb, 1967). 

Three distinct ways of reducing the overall symmetry 
and deriving the complete set of subgroups of a given 
space group are possible (Buerger, 1967). These reduc- 
tion processes are applied either separately or together, 
and are the following: 

(i) change in translation multiplicity; 
(ii) lowering of symmetry to another element in- 

volving the same kind of transformation, direct or 
opposite (sixfold rotocenters to three- and twofold ro- 
tocentres, mirror lines to glide lines); 

(iii) reduction to a simple translation of the same or 
different multiplicity. 

For deriving the two-dimensional space groups com- 
patible with a given multiple cell, the reduction pro- 
cesses first mentioned are made to operate over the 
symmetry elements inherent in the hexagonal lattice; 
they are distributed as follows: sixfold rotocentres 
coinciding with the nodes; threefold rotocentres lo- 
cated at the centres of the triangular meshes; twofold 
rotocentres over the middle of the edges; mirror-re- 
flexion lines containing the nodes and being either co- 
incident with the rows of nodes or perpendicular to 
them; glide-reflexion lines containing the middle points 

of the edges, that is the twofold rotocentres, and lying 
parallel to the mirror lines. 

Among the multiple cells derived through the pre- 
vious equations for a given multiplicity it is necessary 
first to select those to which these derivative groups will 
be applied, in order to obtain the homogeneous con- 
figurations with a certain filling proportion. This choice 
is determined ill the way explained below by the multi- 
plicities of the available sets of equivalent positions in 
two-dimensional groups. 

The proportion of nodes filled is represented by p/q 
and refers to the minor component in binary layers. 
All the atoms of this component must be kept equiv- 
alent, as stated above, and the patterns obeying this 
statement are said to be homogeneous. To achieve this 
homogeneity condition, such atoms must occupy those 
nodes of the fundamental triangular net that are crys- 
tallographically equivalent positions in the unit cell of 
the multiple array. Let us now multiply the filling pro- 
portion p/q by s, a positive integer which we shall call 
the multiplicity factor of the configuration. In this way, 
sp is the number of nodes that must correspond to a 
single set of symmetrically equivalent points, and sq 
equals the total number of nodes covered by the mul- 
tiple cell, that is, the multiplicity of this cell. However, 
for a homogeneous configuration to be extracted from 
a multiple cell of sq total nodes, it is necessary that 
a symmetry group containing at least one set of posi- 
tions with multiplicity sp should be applicable to this 
cell. As a consequence, s may assume only certain 
values, depending on the available sets of equivalent 
positions in all the space groups permissible for the 
proportion of filling considered. The available set multi- 
plicities are distributed over the fundamental symme- 
tries in the following way: 

oblique cells: 1, 2 
rectangular cells: 1, 2, 4, 8 
hexagonal cells: 1, 2, 3, 6, 12. 

Cells with the same multiplicity will frequently exist 
with different symmetries; but it may happen that the 
symmetry of the available cells with a given multipli- 
city (sq) does not permit the covering, with a single set 
of equivalent positions, of all the nodes that might be 
kept equivalent (sp), even for the lowest multiplicity 
factor (s= 1). For such a filling proportion p/q, any 
pattern that one might conceive would be non-homo- 
geneous. 

Application to a certain set of filling proportions 

Triangular nets may be used for the description of 
crystal structures based oll close packings of large 
atoms, with different degrees of filling of the interstices 
(Smirnova, 1956; lida, 1957; Wells, 1954, 1958; Mor- 
ris & Loeb, 1960; Gehman, 1963; Loeb, 1964; Lima- 
de-Faria, 1965; Beck, 1967, 1968; Lima-de-Faria & 
Figueiredo, 1969). They are applied either to the 
closest-packed layers or to the layers of interstitial 
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atoms, octahedral and tetrahedral, when considering 
separately the upper and lower tetrahedral voids. 

The present paper derives from an earlier paper. 
The method now described was first applied in the 
exhaustive derivation of the possible homogeneous con- 
figurations for the filling proportions dealt with there. 

These proportions are listed in Table 1, first column. 
They correspond to the minor component in close- 
packed structures of formulae XmY, and AmX,, where 
X and Y refer to the atomic species building the close 
packed array and A to the atomic species occupying 
the octahedral voids of this packing, always with 
m,n<_4. Two possible sequences were considered for 
generating these structures: equal layers and alternate 
layers. 

Table 1 lists the cell multiplicities (sq) that are re- 
quired by such a range of filling proportions according 
to the multiplicities available for the sets of equivalent 
positions in two-dimensional symmetry groups. This 
Table distinguishes these set multiplicities and also lists 
the symmetries containing them. 

The multiple cells existing for every fundamental 
symmetry and their orientation relative to the tri- 
angular net are derived through the mathematical ex- 
pressions established above [equations (1) and (2), when 
giving values to k, l, u and v, until A/c~ < 60]. The anal- 
ysis of the possible cells derived in this way shows that 
not all those cells listed in Table 1 exist with a con- 
venient symmetry to account for the necessary set mul- 
tiplicities. Conversely, some multiplicities are realized 
with various cell outlines and orientations, and also 
several distinct configurations are obtained when ap- 
plying all the permissible space groups to the same 
cell, or even when giving the permissible values to the 
free parameters of one set of equivalent positions. As 

Table 1. Number of symmetrically equivalent 
nodes filled in the cells with the multiplicities 

(sq) required by the domain of filling proportions 
(p/q) chosen to illustrate the application of the 

derivation method 
In the last line the symmetries are indicated that  contain sets 
of  equivalent positions with the multiplicities considered under  
each sq value. H, hexagonal ;  R, rectangular ;  O, oblique. 

a result there is great variation in the total number of 
distinct configurations obtained for each one of the 
filling proportions, as can be seen from Table 2, which 
contains aU the homogeneous configurations derived 
for the filling proportions listed in Table 1. 

To explain in detail the application of this derivation 
method, the study of the tilling proportions 6 and 7 a 
is presented here. 

Both proportions are realized for the same cell mul- 
tiplicities (7s), and the multiplicities of the sets of po- 
sitions to be filled in such cells are respectively (6s) and 
(3s). Because their multiplicities are multiples 
of 6 and 3, these sets may only be found under 
hexagonal symmetry; as the equivalent positions under 
this symmetry are grouped in sets of one, two, three, 
six and twelve, as already mentioned, the permissible 
values for the multiplicity factor s are 1 and 2 for ~ and 
1, 2 and 4 for ~}, and consequently the necessary cell 
multiplicities are 7, 14 and 28 (see Table 1). The survey 
of the total number of nodes covered by cells with hex- 
agonal shape as a result of giving values to k and l in 
equation (3), reveals that there is one multiple cell with 
seven points, none with 14 points and one with 28 
points. 

The multiple cell covering seven points is located 
over the original hexagonal lattice in such a way that 
the actual symmetry elements are reduced to rotocen- 
tres exclusively, the highest applicable symmetry group 
being p6 (Fig. 2). The only way to group the seven 
nodes covered by this cell under p6 is to ascribe the 
equivalent position l(a)6* to one node (taken as the 
origin), and 6(d)1 to the remaining six nodes; one 
homogeneous configuration is therefore obtained for 
-~, and another for 7 x, but no attention is called to this 
pattern as its filling proportion lies out of the range of 
p/q values selected to illustrate the method of deriva- 
tion. Now, two ways are possible for reducing the 
symmetry of this cell to a subgroup of p6. One may 
reduce the sixfold rotocentre to threefold - consequent- 
ly eliminating the twofold rotocentres - and the group 
p3 is obtained (Fig. 2); obviously, the set of general 
positions under p6 is here split, and the six points are 
grouped into two sets of three points each; therefore, 
the filling proportion 3 is attained, but only one dis- 
tinct pattern is obtained because both groups of nodes 
corresponding to the set 3(d) 1 underp 3 lead to the same 
configuration. This is not always the case for different 
ways of grouping the nodes satisfying the same set of 
equivalent positions, as may be seen in Table 2 for the 
symmetry group p2 when applied to large cells. Also, 
three distinguishable sets of threefold rotocentres were 
generated when lowering the sixfold rotocentres to 
threefold, but this fact does not lead to distinct patterns 
in the present case. To lower the symmetry of this mul- 
tiple cell even more, one may reduce the sixfold roto- 
centres to twofold and thus obtain the space group p 2; 

* The symbol following the brackets specifies the point  sym- 
metry. 

A C 29A - 2 
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as it is oblique, for the reasons mentioned before, this 
group cannot be used to derive homogeneous configu- 
rations corresponding to the proportions k and 9, but 
only -~ or 2. 

The multiple cell covering 28 nodes bears the same 
orientation relationship with the fundamental hexago- 
nal lattice as does the cell with multiplicity seven. Thus, 
the highest applicable symmetry group is also p6, 

whose highest set multiplicity is six; the configuration 
arising from filling this set [general position 6(d)] would 
correspond to the proportion p/q=~-~. Therefore, no 
homogeneous configuration can be obtained for ~t with 
this cell. 

In conclusion, only two homogeneous patterns are 
obtained for the proportions 6 and 3, and both with 
hexagonal symmetry and a multiplicity factor one. 

Table 2. Homogeneous configurations derived for the set of filling proportions listed in Table 1 

The configurations are ordered by increasing multiplicity factor (s), and for each s by decreasing filling proportion p]q (top left). 
The symmetry (space group) is indicated and an order number is given to each pattern (bottom left). 
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Table 2 (cont.) 
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p6m ~ ~=rV"~/~/-v'~/~ 
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Conclusions 

One of the important features of Table 2 is the absence 
of homogeneous configurations for the proportion ~, 
a fact that had already been noticed (Lima-de-Faria & 
Figueiredo, 1969). This also implies that any pattern 
with filling proportion ½ is non-homogeneous with re- 
spect to the predominant chemical component. 

Another feature to notice is the derivation of only 
one configuration each for the proportions ¼, ~ and --} 
(Table 2, numbers 2, 1 and 5). The first was also 
derived in the preceeding work, but the other two were 
not. The reason for this may now be understood: the 
pattern for a implies the close location of the three 
occupied nodes, a situation which clearly disagrees 
with one of the structural-stability conditions (Lima- 
de-Faria, 1965) from which the simplified technique 
emerged; and the choice of the most distant position, 
being made on adjacent rows in that technique, prevents 
the derivation of the -~ pattern. 

According to the structural-stability conditions al- 
ready mentioned, the configurations presenting a high 
probability of being found in real structures are among 
the most symmetrical, with lowest multiplicity, and 
presenting the highest degree of regular and uniform 
tilling of nodes over the fundamental triangular net. 

Symmetry has a directly available expression and mul- 
tiplicity is a measurable quantity. The third charac- 
teristic is closely related with the space-filling principle 
(Laves, 1956), or its alternative, the vector-equilibrium 
principle, stated by Loeb (1967, 1970) in the following 
way: 'crystal structures tend to assume configurations 
in which a maximum number of identical atoms or 
ions are equidistant from each other; if more than a 
single type of atom or ion are present, then each atom 
or ion tends to be equidistant from as many as possible 
of each type of atoms or ions' (sic). The mathematical 
concept of Dirichlet domains in a two-dimensional 
space would perhaps allow for a quantified expression of 
this homogeneity condition, but this suggestion requires 
further study. Configurations that are equally pos- 
sible from the viewpoint of symmetry because they 
have been derived exclusively through symmetry con- 
siderations may not be equally probable when con- 
sidered using a criterion with a physical background, 
such as the one mentioned above. 

The method developed throughout this work appears 
to be a general tool for the purpose of deriving patterns 
for binary layers. It is possible to adapt and extend it 
to plane networks other than the triangular net by 
dealing properly with the symmetry of the involved 
network and its metrical characteristics. Regular tes- 

A I\ IX i I\ I\ I\ 

p6 (lo)--~- (1); (6d)--=, (2,3.4. 5,6.7) 

V ~' M/ M/ ~ ~L ~/ 

~ 7R ~ ~ 7"x A 

P/q = 6/7 

p3 (la)..-~ (1); (3d)--~ (2,3,/.,); (5,6,?) 

\ /  ~' 

/ "  

',,d d v V 

P/q = 3/7 

Fig.2. Multiple cell covering seven points. Possible ways of grouping these points under the plane groups p6 and p 3, and re- 
sulting homogeneous configurations for filling proportions ~ and ~}. 
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sellations would be handled more easily, but even binary 
layers based on the homogeneous circle packings re- 
cently studied (Fischer, 1968) could be derived by an 
extension of this method. 
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Relations between the DO9 (ReO3) Structure Type and Some 'Bronze' and 'Tunnel' Structures 
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A number of the 'bronze' and 'tunnel' structures are derived from the D09 type by a simple geometrical 
operation: examples given are the tetragonal tungsten bronze and related structures, and Mo5014 and 
LiNb6015F. They are seen to form families of crystallographic shear structures of a new type. 

Introduction 

In the D09/Re09 structure type [MO6] octahedra are 
united by common vertices [Fig. l(a)]. Projection down 
one of the cubic axes [Fig. l(b)] emphasizes the empty 
'tunnels' of square cross-section within the structure. 
(They are in fact strings of cuboctahedra sharing square 
faces.) In the E2~/perovskite structure type sites at ~z-}½ 
(cuboctahedra centres), which are empty in 009, are 
occupied by the A cations, e.g. by Ca in CaTiO3 [Fig. 
1(¢)]. In some tungsten bronzes AxWO3 these same 
sites are fractionally occupied by alkali metal or other 
cations. 

But there are other bronze structures which also con- 
tain sites of high coordination number partly occupied 
by A cations. One is the tetragonal tungsten bronze 
(TTB) structure in which these sites are in pentagonal 
as well as square tunnels in an array of corner-con- 
nected [WO6] octahedra (Magn61i, 1949a). Examples 
of TTB-related structures are legion, particularly in the 
system Nb205 + WO3 (Stephenson, 1968). A number of 
binary, ternary and quaternary oxides and oxide-fluor- 
ides have related structures but definite stoichiome- 
tries: Mo5014 (Kihlborg, 1963), Ta3OTF (Jahnberg & 
Andersson, 1967) and the closely similar LiNb6OlsF 
(Lundberg, 1965), and NaNb6OxsF (and NaNb6OxsOH) 


